Restoration of the Everglades' Saline Wetlands and Florida Bay: Responses Driven from Land and Sea

David Rudnick<sup>1</sup>, Colin Saunders<sup>2</sup>, Carlos Coronado<sup>2</sup>, Fred Sklar<sup>2</sup> Erik Stabenau<sup>1</sup>, Vic Engel<sup>1</sup>, Rene Price<sup>3</sup>

<sup>1</sup> South Florida Natural Resources Center, Everglades National Park <sup>2</sup> Everglades Systems Assessment Section, South Florida Water Management District <sup>3</sup> Dept. of Earth and Environment, Florida International University





9<sup>th</sup> INTECOL Orlando, Florida June 7, 2012



FLORIDA COASTAL EVERGLADES Long Term Ecological Research What are the primary manageable drivers of the Everglades - Florida Bay Ecosystem? .....water, salt, phosphorus



Human development drained water & added P, yielding:

- dry wetland; soil oxidation
- hypersaline estuary & salt-water intrusion
- altered ecosystem structure and function

#### Sea-level rise is:

- increasing saltwater intrusion
- increasing P input from the Gulf of Mexico

Restoration can push back against the trajectory of each of these forcings

Today : discuss the state & future of the restoration – sea-level rise contest

# Everglades Restoration: Freshwater flow from Kissimmee River to Florida Bay



## **Global sea-level rise trend and projections**



From Nicholls and Cazenave (2010)





# Saltwater Intrusion Caused by Freshwater Diversion and Sea-level Rise

Saltwater intrusion with expanding "white zone" is more extensive east of Everglades National Park

(from Ross et al. 2000)



imagery ©2009 TerraMetri Google -

# Saltwater Intrusion in Southeastern Groundwater Well



# Saltwater Intrusion: Shallow Groundwater (<25 m)



From Price et al. 2006

# Shark River Slough Stage Rising With Sea Level





If shallower hydrologic slope, higher stages, increased inundation, slower flow, longer residence time.

# **Biogeochemical Effects of Saltwater Intrusion**

#### Conceptual model: increased saltwater intrusion increases subsurface P mobility and flux

P input to mangrove zone and near-shore waters: change with restoration?



From Price et al. 2010



Phosphorus Input from Groundwater?

Evidence that saltwater intrusion may cause the release of phosphorus from bedrock to the mangrove zone and estuaries

From Price et al. 2006

## Surface Elevation Tables (SETs)







# **Coastal Wetland** SET Study Area Non-flooded:







#### Frequently flooded



#### Permanently flooded

# Summary of coastal wetland SET results: soil elevation changes slower than sea-level rise

#### Southwestern Everglades – change over 10 yrs





## **Rapid Marsh Elevation Loss on Cape Sable**

# Associated with saltwater intrusion from canals - an indicator of future peat collapse?





From H. Wanless



Florida Bay Biogenic Carbonate Mud Banks:

- Restrict water exchange, dampen storm energy
- Influence salinity (hypersalinity to 70 psu)
- Increase nutrient retention
- Strong interaction with seagrass beds

# Florida Bay Mudbank Surface Elevation Tables



# **Climate Change and Elevation Response**



#### **Conclusion:**

- Soil and mud bank elevation changes are slower than recent sea-level rise
- The state of future Everglades' wetland and estuarine systems can be influenced by restoration





#### **Speculative forecast:**

- Landscape will be shaped by oceanic energy, but modified by plant-soil response to sealevel rise and restoration
- Marine P will increase productivity
- Estuarine systems will expand, still with dependence on freshwater flow.



# Scott Nixon

With sorrow, respect and thanks to two friends and mentors

# John Ogden

